

Beta-decay spectroscopy at the **ISOLDE Decay station** (2014-2015)

Author: R. Lica (CERN, IFIN-HH)

IDS at ISOLDE

Deflecto

- ◆ The Isolde Decay Station (IDS) project aims at providing a permanent, yet flexible, experimental set-up for decay studies using the radioactive ion beams (RIB) from ISOLDE, CERN since 2014.
- ◆ The detection system of IDS is very versatile, with a core of four germanium clusters (HPGe) used for gamma detection. Four different setups can be provided depending on the case under study and physics aim:
 - high efficiency beta-gamma spectroscopy
 - neutron time-of-flight spectroscopy

RC4 BEAMLINE

- charged particles spectroscopy using Si detectors
- beta-decay fast-timing studies using LaBr3(Ce) detectors.
- The low background and high sensitivity of the setup allow measurements to be performed

IDS Beamline

existing infrastructure.

designed in 2013 to accommodate the

new IDS permanent setup withing the

HV and Autofi

KU LEUVEN

IDS Collaboration:

199192 Decay Station

H. De Witte M. Huyse P. Van Duppen

N. Marginean C. Mihai A. Negret C. Sotty

M.J.G. Borge J. Kurcewicz M. Madurga E. Rapisarda

on short-lived isotopes with half-lives less than 50 ms and yields down to a few ions/sec.

GEANT4 simulations of the IDS setup ◆ The **RC4** beamline of ISOLDE was

- ◆ A dedicated code using GEANT4 was developed in order to characterize the detectors of IDS.
- The geometries were imported from CAD models.
- ◆ A very good agreement (95%) was achieved for the HPGe Clovers in determining their absolute detection efficiency.

IDS which is used in parallel with other systems dedicated for particle Particle spectroscopy or neutron spectroscopy. DAQ

Data acquisition (DAQ)

◆ The **DAQ** of IDS is very complex,

systems.

consisting of both digital and analog

100 MHz NUTAQ Lyrtech [1]

digitizers represent the main DAQ of

◆ 5 HPGe Clover detectors are

VANDLE DAQ

IDS Server

Neutron TOF spectroscopy using VANDLE

◆ VANDLE (Versatile Array for Neutron Detection

P. T. Greenlees J. Konki P. Rahkila

L.M. Fraile V. Vedia

N. Warr

used together with a high efficiency (~95%) plastic scintillator as β particle detector.

- ◆ The radioactive ions are implanted on a moving tape in order to remove the activity.
- Experiments: IS588 (²⁰⁷⁻²⁰⁸Hg), IS530 (³⁴Mg)

High efficiency β detector surrounding the implantation point on the moving tape

at Low Energies), developed at UTK (USA) [2], consisting of scintillator bars read with two photomultipliers at both ends, recorded neutron signals in coincidence with β particles.

• Experiments: IS599 (⁵¹⁻⁵³K), IS600 (¹³⁰⁻¹³²Cd)
 Sector
 Neutron Energy (MeV)

 5.0 2.0 1.0
 0.5
 0.1

Charged particle spectroscopy

High Efficiency *β*-*γ* spectroscopy

 Particle detectors (Si pads and DSSSD) are used together with HPGe clovers • Experiments: IS476 (³¹Ar), IS545(¹¹²⁻ ¹¹⁸Ba), IS507 (²⁰Mg), IS605 (¹⁶N)

β-decay fast-timing studies

◆ LaBr₃(Ce), fast plastic scintillators and HPGe clover detectors are used for life-time measurements using the $\beta_{\gamma}\gamma_{(t)}$ fast-timing technique [3].

⁸⁴Ga

- ◆ The ranges available for measurement are 10 ps 100 ns
- Experiments: IS579 (¹⁴⁸⁻¹⁵²Ba), IS590 (⁶⁸Mn)

O. Tengblad E. Nacher A. Perea

R. D. Page D. S. Judson

A. Andreyev R. Wadsworth [1] www.nutaq.com [2] S. V. Paulauskas et al., NIM A737 (2014) 22-28 [3] H. Mach et al., NIM A280 (1989) 49 [4] R. Lica et al., Phys Rev C 93, 044303 (2016)